

ASHA K. JHTENDRA
UNIVERSITY OF MINNESOTA

This program was developed and supported with funding from the Institute of Education Sciences, U.S. Department of Education, Grant Nos. R305K060002 and R305A110358 to the University of Minnesota. The Principal Investigators on the project include Asha K. Jitendra and Jon R. Star. This publication does not necessarily represent the policy of the U.S. Department of Education, nor does the federal government necessarily endorse the material.

Copyright © 2016 by Asha K. Jitendra and Jon R. Star. All rights reserved.

The examples in this curriculum are used in a fictitious manner. We are not making statements about any specific person, character, business, place, or event.

This is a Demo Copy of a copyrighted work. You are granted permission to use this Demo Copy solely for the purpose of determining whether or not you wish to purchase this material. As a result, you may share this Demo Copy only with those necessary to make that decision. You may not otherwise use, share, copy or print this Demo Copy without express written permission.

SCHEMA BASED Instruction (SBI) CURriculum
 Scope and Sequence

LESSON	CONTENT	SCHEDULE
Unit 1: Ratios and Proportions		
1 \& 2	Ratios	3 days
3 \& 4	Solving Ratio Word Problems: Part-to-Part and Part-to-Whole Comparisons	3 days
5	Rates (Quiz over Lessons 1-4)	1 day
6 \& 7	Solving Proportion Problems	3 days
8 \& 9	Scale Drawing Problems (Quiz at end of Lesson 9 over Lessons 1-7)	3 days
10	Unit 1 Review	1 day
Unit 2: Percents		
11	Fractions, Percents, \& Decimals	3 days
12	Solving Percent Problems: Part-to-Whole Comparisons	
13 \& 14	Solving Percent Problems: Percent of Change	3 days
15	Solving Sales Tax \& Tips Problems: Percent of Change (Quiz over Lessons 11-14)	3 days
16	Solving Markup \& Discount Problems: Percent of Change	
17	Solving Multistep Percentage Adjustment Problems	3 days
18	Solving Simple Interest Problems	
19	Review: Identifying and Categorizing Problem types (Ratio, Proportion, and Percent)	1 day
20	Unit 2 Review	1 day
21	Units 1 \& 2 Review	1 day
Total		29 days

Note. Schedule is based on 45-60 minute class period.

Guide to Teacher Materials

For each lesson in the teacher guide, there are corresponding materials to support instruction.
Teacher Guide: This includes scripted materials for teaching each lesson. The scripts are not intended to be read verbatim, but rather to be reviewed and to guide you in developing students' proportional reasoning using the specified examples and problem solving activities. Worked answers for the Practice Problems for each lesson are included at the end of the corresponding lesson.

Lessons may also include the following:

- Detailed instructions or procedures (e.g., Think-Plan-Share)
- DISC checklists
- Jeopardy PowerPoint (Lesson 19)

There are quizzes and quiz answer keys in the following lessons:

- Lesson 5
- Lesson 9
- Lesson 15

Corresponding Materials:

- Student Workbook: This includes blank copies of all problems included in the Teacher Guide. This book also includes a reference guide for solving each problem type, located throughout the corresponding lessons. A DISC checklist is included at the end of the book for students to refer to when solving problems.
- Student Homework Book: This includes blank copies of all problems included in the Teacher Homework Answer Key. This book also includes a reference guide for solving each problem type, located at the end of the book. A DISC checklist is included at the end of the book for students to refer to when solving problems.
- Teacher Homework Answer Key: These are the answers (with explanations) for the student homework book. The first page of each lesson in this booklet is an abbreviated answer key with only the answers.

Lesson 1: Ratios

Lesson Objectives

Students define ratio as a multiplicative relationship. They identify the base quantity for comparison of quantities involving part-to-part and part-to-whole.

Vocabulary: Compared quantity, base quantity, front term, back term, ratio, value of the ratio, part-to-part ratio, part-to-whole ratio

CCSSM: 6.RP.A.1, 6.RP.A.3, 7.NS.A.2, 7.NS.A.2.B, 7.RP.A.2, 7.RP.A.2.A

Lesson 1: Ratios

- Remind students to convert the two different units of time (minutes and hours) to a common unit of time.

Challenge Problem 1.12: Have students solve for Stacy's weight on the moon.

- Remind students to consider how the two ratios/rates are similar (astronaut: $\frac{174 \text { lbs onferth }}{291 b s o n t h e m o o n ~}$;

Stacy: $\frac{102 \text { lbs on Earth }}{\text { xlbsonthemoon }}$)

Warm-Up/Review of
 Equivalent Fractions

Teacher: 1.1 Circle the equivalent fractions (there are 3 equivalent fractions in each set):

$$
\begin{array}{llllllll}
\frac{1}{2} & \frac{5}{10} & \frac{7}{15} & \frac{6}{12} & \frac{3}{9} & \frac{2}{8} & \frac{6}{18} & \frac{1}{3}
\end{array}
$$

1.2 Indicate whether each pair of fractions is equivalent or not (Yes or No):

$$
\frac{3}{5}, \frac{12}{20} \text { (Yes or No) } \quad \frac{25}{40}, \frac{30}{45} \quad \text { (Yes or No) }
$$

1.3 Complete the equivalent fraction by filling in the missing part:
$\frac{1}{2}=\frac{3}{}$
$\frac{1}{7}=\frac{}{21}$
$\underline{4}=\frac{5}{25}$
1.4 Simplify each fraction:

$$
\frac{12}{15}=\quad \frac{22}{44}=\quad \frac{6}{14}=\quad \frac{10}{35}=\quad \frac{9}{27}=
$$

Fraction Word Problem:
1.5 A class is having a pizza party and they ordered 2 pizzas from different restaurants. The class ate $\frac{5}{6}$ of the pizza from Don's Pizzeria and $\frac{9}{12}$ of the pizza from Perfect Pizza. Did they eat the same amount of pizza from each restaurant? Explain your reasoning.

Teaching the Lesson

	Ratio as a Multiplicative Relationship Teacher: Today we will learn to compare quantities. (Display Example 1.6)
Example	There are two trees in this picture. One is 6 feet tall and the other is 2 feet tall. There are many ways that you might compare the heights of these two trees. Can someone tell me one way that you can compare these two quantities?

Discussion points: Give students a few moments to think about this question by themselves and/or to chat with a person nearby. Walk about the room to identify students who discussed the additive relationship between the two quantities. Call on one of these students first to present their response followed by responses that focused on the multiplicative relationship. Note that even though both additive and multiplicative responses will come up and be discussed, optimally the emphasis should be more on the multiplicative responses.

Example 1.7

Here is a picture of two desks. When you measure these pictures of the teacher and student desks in paper clips, the teacher desk is 4 paper clips long and the student desk is 1 paper clip long.

I want you to look at the pictures (point to pictures) of the teacher and student desks and do the following (point to statements on the teaching transparency): (1) Represent the relationship between the length of the two desks as a ratio (i.e., a comparison that expresses a multiplicative relationship between the two quantities or measures), (2) write the value of the ratio, (3) label the front term (compared quantity) and the back term (base quantity), and (4) describe the relationship between the two quantities in words.
(Give students a few minutes to complete these 4 tasks, individually. If students are sitting in groups, consider giving the groups time to go over their answers before you go over these with the class. Reinforce that a ratio value is the value found when you divide the front term by the back term).

Possible student

 Teacher notesTeacher response

Represent the two quantities as a ratio.		
4:1	Either response is correct; however, the ratios represent	Very good! This ratio uses a multiplicative relationship (4:1) to compare the length of the teacher's desk to the length of the student's desk.
1:4	different comparisons, so the ratios are not "the same." If students ask why they are different, at this point, simply respond that they are different because they have different front and back terms.	Great - you thought of a different ratio, 1:4. This ratio is different, because it involves a multiplicative comparison of the length of the student's desk to the length of the teacher's desk. Both ratios of $4: 1$ and 1:4 correctly describe this single situation involving the lengths of these two desks using a multiplicative relationship.

Possible student response	Teacher notes	Teacher response
Write the value of the ratio.		
$4 \div 1=4$	Either response is correct; however, because they are different ratios, they also have different ratio values. The different ratio values provide information about the relationship between the lengths of the two desks. Reinforce that a ratio value is the value found when you divide the front term by the back term.	Perfect! To find the value of the ratio you divide the front term by the back term.
$1 \div 4=\frac{1}{4}$ or 0.25		Wonderful! You divided the front term by the back term to get the ratio value of $\frac{1}{4}$ or 0.25 . Because the ratio $4: 1$ is different than the ratio 1:4, you also found that these ratios have different ratio values. In the ratio 4:1, the ratio value of 4 tells you that the teacher's desk is 4 times as long as the student's desk. In the ratio 1:4, the ratio value tells you that the student's desk is $\frac{1}{4}$ the size of the teacher's desk.
Label the front term (compared quantity) and the back term (base quantity).		
4 is the front term (compared quantity) and 1 is the back term (base quantity).	Yes! For the ratio $4: 1,4$ is the front term (compared quantity) and 1 is the back term (base quantity). You are doing a great job! Yes, for the ratio 1:4, 1 is the front term (compared quantity) and 4 is the back term (base quantity).	
1 is the front term (compared quantity) and 4 is the back term (base quantity).		
	ibe the relationsh	ween the two quantities in words.
The ratio of the length of the teacher's desk to the length of the student's desk is 4:1.	All responses are correct; however, the wording of the ratios emphasizes that the order of the numbers in the ratio is very important and a different order will communicate different information about the	Excellent! This wording emphasizes which desk length is the compared quantity (i.e., teacher's desk) and which desk length is the base quantity (i.e., student's desk).
The length of the teacher's desk is 4 times longer than the length of the student's desk.		Way to go! This wording describes the multiplicative relationship between the lengths of the two desks, and indicates how much longer the teacher's desk (compared quantity) is than the student's desk (base quantity) for these two specific desks.

Teacher: (Write on board as you discuss the solution.) The answer to the first question is 8:2, which represents the ratio of the number of Lisa's brownies to the number of Tim's brownies. The solution to the second question is $8 \div 2=4$. To solve this problem, you needed to identify the base quantity. Because you are using a multiplicative relationship (8:2) to compare the number of Lisa's brownies to the number of Tim's brownies, the number of brownies Tim bought is the base quantity (back term).

Base quantity/back term

\square
\square
\square
\square
The answer to the third question is $2: 8$, which represents the ratio of the number of Tim's brownies to the number of Lisa's brownies. In this situation, you are multiplicatively comparing the number of brownies Tim bought to the number of brownies that Lisa bought. Therefore, the number of Lisa's brownies is the base quantity (back term) for comparison. The solution to the fourth problem is $2 \div 8=\frac{2}{8}=0.25$. You can use both fractions and decimals for the ratio value. These examples of different ratios ($8: 2$ and $2: 8$) are within the context of a single situation involving brownies made by Lisa and Tim and show us that a ratio is a multiplicative relationship between two quantities. Also, notice that a ratio is a way to compare two quantities using the division operation. Therefore, the order of the two terms in a particular ratio is important. If you noticed the solutions to the two questions, it is clear that the value of ratio $8: 2$ (4) is not the same as the value of ratio 2:8 (0.25). Yet both ratio values tell us important information about this specific situation with Lisa and Tim baking brownies.

(Display Example 1.9)

Ryan, a basketball player, is 6 ft tall, and his friend Steve, who is shorter than Ryan, is 60 inches tall. Ryan says that the ratio between his height and Steve's height is $6: 60$. Is $6: 60$ the best way to describe the relationship between Ryan and Steve's heights?

Discussion points: Some students may agree and reason that we are comparing 6 (front term or compared quantity, which is Ryan's height) to 60 (back term, or base quantity, which is Steve's height). Model (think-aloud) how you would solve this problem. It is important to model your thinking (as the script below illustrates) rather than tell students how to solve the problem. Also, model thinking that may not be correct and that will require adjusting the strategy, as is done below. In this situation, show students the importance of forming a more meaningful relationship by focusing on the units when comparing two quantities.

Teacher: $\quad 6: 60$ is one ratio that expresses a multiplicative relationship between Steve's and Ryan's heights. 1 know that a ratio compares two quantities, where one quantity is the compared quantity and the other is the base quantity. In this problem, 6 is the compared quantity and 60 is the base quantity, because we are comparing Ryan's height to Steve's height. I can also represent this same ratio as $\frac{6}{60}$. The result of $6 \div 60$ is $\frac{1}{10}$ or 0.1 . That is, Ryan is 0.1 times as tall as Steve. This does not seem to make sense to me, because we know that Ryan is taller than his friend Steve. I know that I correctly used the base quantity for comparison. Let me read the problem and underline Ryan's and Steve's heights. Ryan, a basketball player, is 6 ft tall, and his friend Steve is 60 inches tall. It looks like that we are comparing feet to inches. I think it would help if we compared the two heights using the same measure (i.e., feet or inches). What can I do?

This problem gives Ryan's height in feet and Steve's height in inches. One way to make a better ratio would be to convert both heights to inches. Since there are 12 inches in a foot, I can convert 6 feet (Ryan's height) to inches by multiplying how tall he is in feet by 12. So 6 times 12 is 72 , so Ryan is 72 inches tall. So the ratio using both heights in inches would be 72:60.

(Display Example 1.10)

In a survey of 50 seventh graders, 10 chose Orangina as their favorite drink and 40 chose Sprite as their favorite drink. Find the following ratios and the value of each ratio, and then say what

Example 1.10 the ratio means using words and numbers.
(1) The number of $7^{\text {th }}$ graders who chose Sprite to the number of $7^{\text {th }}$ graders who chose Orangina
(2) The number of $7^{\text {th }}$ graders who chose Sprite to the total number of $7^{\text {th }}$ graders
(3) The number of $7^{\text {th }}$ graders who chose Orangina to the number of $7^{\text {th }}$ graders who chose Sprite
(4) The number of $7^{\text {th }}$ graders who chose Orangina to the total number of $7^{\text {th }}$ graders
(Note: Requiring students to "say what the ratio means using words and numbers" will not be initially clear to them, so you may have to rephrase as follows: "quantity 1 is -- times as large/small as quantity 2.")

Possible student

 response
Teacher notes

Teacher response
The number of 7th graders who chose Sprite to the number of 7th graders who chose Orangina (ratio, ratio value, and meaning in words)

Ratio: 40:10
Value: $40 \div 10=4$
Meaning: The 40 students who chose Sprite is 4 times as large as the 10 students who chose Orangina.

Ratio: 10:40
Value: $10 \div 40=\frac{1}{4}$ or 0.25

Meaning: The 10 students who chose Orangina is $\frac{1}{4}$ as large as the 40 students who chose Sprite.

Emphasize that this ratio is a multiplicative comparison of two parts of the seventh grade population - the 40 students who chose Sprite and the 10 students who chose Orangina. This is called a part-to-part comparison, because it compares part of a set (the number of students who chose Sprite) to another part (the number of students who chose Orangina) of the same set (the total of all seventhgrade students who were surveyed).

Yes, this ratio describes two groups of students: 40 seventh graders who chose Sprite compared to 10 seventh graders who chose Orangina. The ratio value of 4 tells us that the number of seventh graders (compared quantity) who chose Sprite is 4 times the number of students who chose Orangina (base quantity).

This is actually the answer to question \#3. In question \#1 we are comparing the number of students who chose Sprite (the front term/compared quantity) to the number of students who chose Orangina (the back term/base quantity). Remember, when you set up your ratio, you have to have the correct front and back terms. If not, the ratio value will not be correct. Let's think about this ratio value -- does it make sense that the 40 students who chose Sprite is $\frac{1}{4}$ of the 10 students who choose Orangina when 40 is greater than 10 ? No, so the ratio value of $\frac{1}{4}$ does not make sense.

The number of 7th graders who chose Sprite to the total number of 7th graders (ratio, ratio value, and meaning in words)

Ratio: 40:50 Value: $40 \div 50=\frac{4}{5}$ or 0.8 Meaning: The 40 students who chose Sprite is $\frac{4}{5}$ as large as the 50 students surveyed	Emphasize that this ratio is a multiplicative comparison of a part of the seventhgrade population (students who chose Sprite) to all of the seventh graders surveyed. This is called a part-to-whole comparison, because it compares part of a set (the number of students who chose Sprite) to the whole set (all of the seventh graders surveyed).	That's right! We are using a multiplicative relationship (40:50) to compare the number of seventh graders who chose Sprite (the front term or compared quantity) to all of the seventh graders surveyed (the back term or base quantity). This ratio value of $\frac{4}{5}$ or 0.8 tells us that the number of seventh graders who chose Sprite is $\frac{4}{5}$ the total number of seventh graders surveyed.
Ratio: 40:10, 10:40 Value: $40 \div 10=4,10 \div$ $40=\frac{1}{4} \text { or } 0.25$		With these ratios, we are still using a multiplicative relationship to compare the two parts of the whole group of seventh graders surveyed (students who chose Sprite and students who chose Orangina). The question is asking us to compare one part of the seventh graders (students who chose Sprite) to all of the seventh graders surveyed. Because the ratios are not written in the correct order and/or do not identify the correct quantities, you get a ratio value that does not provide you with the right information to make the comparison.
Ratio: 50:40 Value: $50 \div 40=\frac{5}{4}$ or 1.25		This ratio uses the right numbers but in the wrong order-we want to compare the students who chose Sprite (front term or compared quantity) to the whole group of seventh graders surveyed (back term or base quantity). Because the ratios are not written in the correct order and/or do not identify the correct quantities, you get a ratio value that does not provide you with the right information to make the comparison.

Possible student

Teacher notes
Teacher response

The number of 7th graders who chose Orangina to the number of 7th graders who chose Sprite (ratio, ratio value, and meaning in words)

Ratio: $10: 40$		
Value: $10 \div 40=\frac{1}{4}$ or		
or Meaning: The 10 students who chose	Emphasize that this ratio is a multiplicative comparison of two parts of the seventh grade population - the 10 students who chose Orangina and the 40 Students who chose	Perfect! This ratio describes two groups of students: 10 students who chose Orangina compared to the 40 students who chose Sprite. The ratio value of $\frac{1}{4}$ tells you large as the 40 students who chose Sprite. This is called a part-to-part comparison.

The number of 7th graders who chose Orangina to the total number of 7th graders (ratio, ratio value, meaning in words)

Ratio: $10: 50$	Emphasize that this ratio Value: $10 \div 50=\frac{1}{5}$ or is a multiplicative comparison of a part of 0.2
Meaning: The 10 students who chose Orangina is $\frac{1}{5}$ as large as as the 50 students surveyed.	(hoosing students) to all of the seventh graders surveyed. This is called a part-to-whole comparison.

Perfect! This ratio uses a multiplicative relationship to compare a part of the seventh graders (students who chose Orangina) to the whole group of seventh graders surveyed. The ratio value tells you that the number of students who chose Orangina is $\frac{1}{5}$ the total number of seventh graders surveyed.

Challenge (optional)

(Display Challenge Problem 1.11)

Challenge Problem 1.11

Lucinda has been thinking about how much time she spent on homework last week. She worked on homework for a half hour on Monday and 20 minutes on Wednesday. Compare the time Lucinda spent on homework on Monday to the time she did homework on Wednesday. Write two ratios that compare these two times.

Challenge Problem 1.11: Answer

The amount of time Lucinda spent on homework on Monday to the amount of time she spent on homework on Wednesday:

1. In minutes: $30: 20$, which is a ratio of $3: 2$ ($30: 20$ is the same as $\frac{30}{20}$, so we can simplify it to $3: 2$).
2. In hours: $\frac{1}{2}: \frac{1}{3}$

Answer: 3 : 2 in minutes or $\frac{1}{2}: \frac{1}{3}$ in hours.
(Display Challenge Problem 1.12)

Challenge
Problem
1.12

An astronaut who weighs 174 lb on Earth weighs 29 lb on the moon. If Stacy weighs 102 lb on Earth, how much would she weigh on the moon?

Challenge Problem 1.12: Answer

$$
\begin{aligned}
174 \cdot x & =102 \cdot 29 \\
174 x & =2,958 \\
x & =17
\end{aligned}
$$

Answer: 17 lb .

Homework: pp. 1-6

LeSSOn 1.9: Review: Identifying and Representing Problem Types
Lesson ObjectivesStudents learn to identify and categorize word problems into appropriate problem types (e.g. ratio, proportion,percent and percent of change).
Vocabulary: interest, principal, simple interest, annual interest rate, balance, ratio, proportion, percent, percent of change
CCSSM: Standards included in lessons 11-18

Review

(about 10 minutes)
Teacher: Yesterday we solved simple interest problems. What are some situations when we use simple interest?
Students: You might get simple interest if you deposit money in a bank or you might pay simple interest if you get a loan.
Teacher: Exactly! Simple interest is the rate you earn on your money or pay for borrowing money. Is the simple interest rate expressed as a decimal, fraction, or percent?

Students: Percent.

Teacher: \quad Right. Who remembers what the term is for the amount of money you deposit?

Students: Principal.

Teacher:
Right. When we think about simple interest problems, remember that you may be trying to find the amount that was first deposited or borrowed, the simple interest rate, the amount earned or paid in interest, or the final balance. Let's solve this problem.
(Display Review Problem 19.1)
Review
Problem 19.1
You deposit $\$ 600$ into a certificate of deposit. After 1 year the balance is $\$ 630$. Find the simple annual interest rate.

Step 1: Fill the information given in the problem onto the Ratio and Change diagrams.

Step 2: Solve first for the "?" (change amount) in the Change diagram. Remember, simple interest is always added to the principal amount. So, circle the " + " in the change diagram and think what number you would add to $\$ 600$ to get $\$ 630$ or subtract $\$ 630$ from $\$ 600$. $\$ 630-\$ 600=\$ 30$. So, $\$ 30$ was the amount earned in interest in one year.

Step 3: Cross out the "?" for the change amount in the Change diagram and write in $\$ 30$ to indicate the amount of interest earned. Also, cross out the "?" for the change amount in the Ratio diagram and write in $\$ 30$.

Step 4: Solve for the interest rate for 6 months in the Ratio diagram.

$$
\begin{aligned}
\frac{\$ 30}{\$ 600} & \longrightarrow x \\
& \longrightarrow 100 \\
600 \div 100 & =6 \text {, so } 30 \div 6=5
\end{aligned}
$$

Teacher: What is the simple interest rate in this problem?

Students: 5\%.

Answer: You would have earned 5\% simple interest on your deposit.

Teaching the Lesson

Unit Review

Teacher: In this unit, we learned about four types of problems. Who can name them?
Students: Ratio, proportion, percent, and percent of change (including simple interest).
(Note: You may want to write these problem types on the board so that students can refer to them as the review game progresses. Help students see that all of the problems covered in the
unit fit into these basic categories. For example, if students mention problem types like commission or prediction, point out that these are basically percent problems. If they name markup or discount problems, point out that these are percent of change problems. Tip problems may be either percent or percent of change.)

Well done! Today, we are going to play "Jeopardy!" to practice sorting problems into each of these categories. Sometimes the most difficult part of solving a word problem is figuring out what kind of problem you have. This is something we've been working hard on in this unit and something that the DISC checklist helps with. So we are going to practice sorting with this review activity.
(Note: The Jeopardy game is in a PowerPoint format. The rules will be essentially the same as a generic Jeopardy game. Students should play in teams/groups/ partners for about 15-20 minutes. Each group will produce a response in "Jeopardy Talk" - e.g. "What is a ratio problem?" A whiteboard for each group would be ideal, but notebook or pieces of scratch paper would also work. After the problem is displayed, each group will write an answer indicating what type of problem they see. You can then ask groups to reveal their answers and award points according to the point-value of the question - e.g. "Shopping for 30 points". Groups can keep track of their points or you can appoint a score keeper for the class. It is recommended to play regular Jeopardy about 15-20 minutes. There are intentionally more problems than can be played in a class period. The object of the game is to have fun reviewing and sorting the problem types, so there is some flexibility in the way you use the Jeopardy PowerPoint with yourclass. Note that students may be resistant to merely sorting problems and not solving them. This activity is about sorting, and solving practice will be done later in the lesson, in Final Jeopardy.)

Sorting Game

(See Jeopardy PowerPoint)
Our time is up for our round of Jeopardy. Now we will get ready for our round of FINAL JEOPARDY! (Note: This activity is about 15 minutes.) During Jeopardy, you did a very good job of sorting these problems into ratio, proportion, percent, and percent of change categories. When you worked on these problem types, you learned to use diagrams that helped you to represent and solve them. Sometimes, you will be asked to solve problems but will not have these diagrams available. We used the diagrams to represent information in the problem and to understand the relationships between different elements in the problems. When you solve problems, you do not have to use the exact diagrams we used in class to set up the problems. Instead, you can use your own diagrams that are efficient in representing information in the problem and useful in solving the different problems. This is what we are going to do in FINAL JEOPARDY.

Rules for FINAL JEOPARDY: First you will see a problem and decide the problem type, just like you did in the first round of Jeopardy. Next, you will work together to represent the problem. (Note: State something about coming up with a diagram that is useful and quick to do.) There may be different ways to set-up the information in a problem that you will share with the class. Let's look at one problem together.

Example 19.2

The ratio of A's to B's that Sheetal received on her report card was $3: 1$. If Sheetal received 2 B's, then how many A's did she receive?
Teacher: What is the problem type?

Teacher: How do you say this in "Jeopardy talk"?
Students: What is a ratio problem?

Teacher: Right. Now to earn your FINAL JEOPARDY points, you need to set up the problem using your own diagram/representation that would help you to solve the problem, and then solve the problem.
(Note: Walk through this problem with the students with the purpose of showing the students how to set up this problem without a teacher-directed diagram. It is recommended to play Final Jeopardy for about 15 minutes.)

A good question to ask yourself is, "What is the problem asking me to solve?" So, tell me what do you have to solve in this problem?

Students: We have to solve for the number of A's Sheetal earned on her report card.

Teacher: Excellent. Work with your partner to show how you would represent the problem and then solve it.
(Note: Circulate among the student groups giving guidance as necessary. Their work should include the use of correct units to align with the appropriate quantities. The following is an example:

(If students are working slowly or you are pressed for time, it is not necessary to have students solve this and other Final Jeopardy problems - you can instead ask that students merely set-up the problem and not solve it.) After most students have represented the problem, call on students to share their work. Discuss how each student example does or does not accurately represent information in the problem. Remind students that they need to have a good understanding of the relationships in the problem to solve it correctly, but that they do not need to use the exact diagrams used in instruction.)

Problem 19.3

An official U.S. flag has a length-to-width ratio of 19:10. The U.S. flags at Martha Washington Elementary School measure 380 ft . by 210 ft . Are the U.S. flags at Martha Washington Elementary School official U.S. flags?

Problem 19.3: Answer
Problem type: What is a ratio problem?
Possible student representation:

$$
\frac{19}{10} \underset{\longrightarrow}{\longrightarrow} \neq \frac{380}{210}
$$

Answer: No.

Jihoon earns 10% more removing snow for people in his neighborhood than Sam earns in his neighborhood. If Sam earns $\$ 20$ for each driveway he clears of snow, how much does Jihoon earn?

Problem 19.4: Answer
Problem type: What is a percent of change problem?
Possible student representation:

$$
\frac{\$?}{\$ 20}=\frac{10}{100}
$$

$\$ 20+\$?=\$ x$ (i.e., total \$ Jihoon earns for each driveway he clears of snow)
Answer: \$22 per driveway.

A carpenter makes miniature replicas of the furniture in the White House. The scale model of a table that he made is 4 inches long. The full-size table is 36 inches long. What is the model's scale?

Problem 19.5: Answer
Problem type: What is a proportion problem?
Possible student representation:
$\frac{\text { Model }}{\text { Table }}=\frac{4}{36}: \frac{1}{9}$
Answer: 1:9.

Angie went shopping for a new comforter for her bed. She found an entire set of bedding (sheets, pillowcases and comforter) on sale for 40% off. The original price was $\$ 120$. What is the sale price of the bedding?

Problem 19.6: Answer
Problem type: What is a percent of change problem?
Possible student representation:

120-? = \$x
Answer: \$72.

Homework: pp. 175-184

If students did not complete solving any of the problems that they represented during Final Jeopardy using their own diagrams in class, have them solve those problems for homework.

Jeopardy Sorting Game Directions for Using the PowerPoint

Regular Jeopardy

1. Open Jeopardy Sorting Game in PowerPoint.
2. Click slideshow tab.

3. Click From Start Icon.

4. Click the screen to begin.

5. Click on desired point value.

6. After student (or team) has responded, click the screen to reveal the correct answer on the next slide.

7. To return to category selection, click the screen with the correct answer. The PowerPoint will automatically return to the Category screen.
8. Click on desired point value for next problem. Repeat steps 5-7 to complete the Regular Jeopardy game.

Final Jeopardy

After all questions have been answered, or time has run out, proceed to Final Jeopardy:

1. Click on the words "Final Jeopardy" on the bottom of the category selection screen:

SPORTS	SCHOOL	SHOPPING	FOOD/COOKNN	entertanment	misc.
10 Points					
20 Points					
30 Points					
40 Points					
50 Points					
(rinal Jeopardy)					

2. Allow the students to choose from one of the four final Jeopardy choices. Click on the choice selected (e.g., click the words "Choice 2").

This will reveal the final Jeopardy question. Click the screen to reveal the answer. Clicking on the answer screen will bring you back to the title screen.
3. To end Jeopardy Game, press the escape button on keyboard.

	SPORTS	SCHOOL	SHOPPING	FOOD/COOKING	ENTERTAINMENT	MISC.
$\begin{aligned} & n \\ & \frac{n}{z} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Rosie played 3 games of tennis and 1 round of golf. Compare the games of tennis she played to the rounds of golf.	Terrence studied for 30 minutes and relaxed for 10 minutes. Compare the time Terrence studied to the time he relaxed.	Samantha went shopping and bought 3 shirts and 5 pairs of socks. Compare the number of shirts to pairs of socks.	Dominick wants to have enough wings so each boy can eat 6 . There are 11 boys coming to the party. How many chicken wings should Dominick bring?	Their tickets are $\$ 60$ each, and there is a 2% surcharge due to the ticket broker. What is the total cost for one ticket?	He has earned \$7 per hour. This year, Max received a 10\% increase in his pay. How much does he earn per hour now?
	Problem Type Ratio		Ratio	Proportion	Percent of Change	Percent of Change
	Answer 3:1		3:5	66 wings	\$61.20	\$7.70/hr
	Shayla usually plays 3 games of tennis for every round of golf. Last weekend she played 9 games of tennis. How many rounds of golf did she play?	Each classroom in a new middle school needs 7 chairs for every 2 tables. If Ms. Lincoln needs 4 tables, how many chairs will she need?	A store is selling Under Armor hats at 20\% off their original price. What is the sale price of a hat originally priced at \$20?	49% of students at school do not approve of the school's lunches. If there are 473 students who do not like the lunches, how many students are there in the school?	The bill with tax was $\$ 35.45$, and Jenny and her friend want to give a 25% tip because they thought the service was excellent! What will be their total bill?	Maria's art gallery receives 30\% commission on the art pieces it sells. If the gallery sells an art piece for $\$ 670$, how much commission will they earn?
	Problem Type Proportion	Proportion	Percent of C	Percent	Percent of Change	Percent
	Answer 3 games of golf	14 chairs	\$16.00	965 students	\$44.31	\$201.00
$\begin{aligned} & \bumpeq \\ & \underline{Z} \\ & 0 \\ & 0 \\ & 0 \\ & \text { on } \end{aligned}$	The first lap of an auto race is 1000 meters. This is 15% of the total race distance. What is the total race distance?	A fundraiser raised $\$ 650$ for a school trip. If 75% of the money raised was dedicated for the trip, how much money went toward the trip?	A shoe store marks up the price on Nike tennis shoes 45\%. If the shoe store pays $\$ 40$ for each pair of Nike's, what will be the price of shoes for customers at the store?	Rosa's recipe says to increase the cooking time by 4% in high altitudes. If Rosa's recipe usually calls for 45 minutes of baking time, how long should she bake the cake in Denver?	Scott and Karen's meal costs $\$ 16.18$. They want to leave a tip of about 20%. What is the amount of tip they should leave?	Noah runs about 8 miles an hour. Maintaining this speed, how long will it take him to run a 13 mile race?
	Problem Type Percent	Percent	Percent of Change	Percent of Change	Percent	Proportion
	Answer $\quad \$ 6,666.67$	\$487.50	\$58.00	47 min. (46.8)	\$3.24	1.625 hours; 1 hour and 37.5 minutes

Jeopardy Answers

	SPO		SCHOOL		SHOPPING	FOOD/COOKING	ENTER	NMENT	MISC.
$\begin{aligned} & \backsim \\ & \ddots \\ & \vdots \\ & 0 \\ & 0 \\ & \ddots \end{aligned}$	Mike's basketball team won 87% of the games they played over the past 2 seasons. If they played 58 games, how many games did they win?		The cheerleaders ordered new equipment that cost \$382 plus a 4\% delivery charge. What was the total bill to the cheerleaders?		Carissa spent 63\% of her time at Abercrombie and Fitch. If she was at the mall for 5 hours, how much time did she spend at A and F ?	Suppose Lucy's dog eats 2 lb of dog food every 3 days. How many pounds of food will the dog eat in 31 days?	You and a waited 40 get on the coaster at The ride la minutes. time you to the tim on the rid	riend minutes to oller alley Fair. ts 2 mpare the aited in line you were	A band has 50 members. Twelve members are percussionists. Compare the number of percussionists to total band members.
	Problem Type	Percent	Percent of Change		Percent	Proportion		io	Ratio
	Answer	$\begin{gathered} 50 \text { games } \\ (50.46) \\ \hline \end{gathered}$	\$397.28		3.15 hours; 3 hrs and 9 mins	20.67 pounds	20 m	:1 min	6:25
$\begin{aligned} & \backsim \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Last year Val had an average bowling score of 240. This year her average increased 13%. What is her new bowling average?		Aaron received 320 points out of a possible 400 in his history class. What percent of the possible points did Aaron receive?		There was a deal for 3 boxes of General Mills cereals for $\$ 6.26$. Sheryl bought 6 boxes of cereal for her family. How much did she spend?	A recipe for Rice Krispie squares asks for 6 cups of Rice Krispies and 2 cups of marshmallows. Compare the amount of marshmallows to Rice Krispies.	In his colle has 5 action every 2 m If Ben has DVDs, how musical D have?	tion, Ben DVDs for sical DVDs. 5 action many s does he	It rained 2 out of 5 days in the month of October. On how many days did it rain in the month?
	Problem Type	Percent of Change	Percent		Proportion			tion	Proportion
	Answer	271.2	80\%		\$12.52		6 mus	al DVDs	12.4 days
¢	An official U.S. flag has a length-towidth ratio of 19:10. The U.S. flags at Martha Washington Elementary School measure 380 ft by 210 ft . Are the flags at Martha Washington Elementary official U.S. flags?			Jihoon earns 10\% more removing snow for people in his neighborhood than Sam earns. If Sam earns \$20 for each driveway he clears of snow, how much does Jihoon earn?		A carpenter makes miniature replicas of the furniture in the white house. The scale model of a table that he made is 4 inches long. The full-size table is 36 inches long. What is the model's scale?		Angie went shopping for a new comforter for her bed. She found an entire set of bedding (sheets, pillowcases and comforter) on sale for 40% off. The original price was $\$ 120$. What is the sale price of the bedding?	
든	Problem Type	Ratio			Percent	Proportion		Percent of Change	
	Answer \quad No, because 19:10 $=1.9$and $380: 210=1.81$				\$22.00	1 in : 9 inches			\$72.00

RATIO, PROPORTION, and PERCENT PROBLEM CHECKLISTS

Step 1: Discover the problem type

- Read and retell the problem to understand it.
- Ask if the problem is a ...

RATIO PROBLEM
Does this problem have a part-to-part or part-to-whole comparison? Look for symbols, words, and phrases such as: "the ratio of \boldsymbol{a} to \boldsymbol{b}," " $\boldsymbol{a}: \boldsymbol{b}$," " a per \boldsymbol{b}," " \boldsymbol{a} for \boldsymbol{b}," " \boldsymbol{a} for every \boldsymbol{b}," "for every \boldsymbol{b} there are \boldsymbol{a}," " \boldsymbol{n} times as many/much as," " nth of," " a out of $b, "$ to see whether there is a ratio statement that tells about a multiplicative relationship between two quantities in a single situation.

If...Then PROPORTION PROBLEM	
Does the problem describe an "If	

Does the problem describe an "If...Then" statement of equality between two ratios/rates that allows us to think about the ways that two situations are the same? That is, the If statement describes a rate/ratio between two quantities in one situation and the Then statement involves either an increase or decrease in the two quantities in another situation, but with the same ratio.

PERCENT,
PERCENT OF CHANGE, or SIMPLE INTEREST PROBLEM

Look for symbols or words such as "\%," "percent," "percent of change," or "simple interest," to see whether there is a percent or percent of change statement that tells about a multiplicative relationship between two quantities.

- Ask if this problem is different from or similar to another problem that has already been solved.

Step 2: Identify information in the problem to represent in a diagram(s)

- Underline the ...

ratio or comparison statement.	two quantities that form a specific ratio/rate.	percent or simple interest statement.
- Write ...		
\rightarrow compared and base quantities and units in the diagram. \rightarrow value of the ratio between the two quantities in the diagram (ratio value). \rightarrow " x " for what must be \square solved. \square	\rightarrow names of the two quantities that form a ratio in the diagram. \rightarrow quantities and units for each of the two ratios/rates in the diagram. \rightarrow " x " for what must be solved.	\rightarrow information (part, whole, or ratio value; change, original, ratio value, or new) in the problem in the diagram(s). \rightarrow " x " for what must be solved. \square $+$ \square

Step 3: Solve the problem

- Try to come up with an estimate for the answer.
- Translate the information in the diagram into a math equation.
- Plan how to solve the math equation. $\longleftrightarrow \stackrel{\longleftrightarrow}{\longleftrightarrow}$
- Solve the math equation, and write the complete answer.

Step 4: Check the solution

- Look back to see if the estimate in Step 3 is close to the exact answer.

- Check to see if the answer makes sense.

